

Micro Commercial Components

Micro Commercial Components 20736 Marilla Street Chatsworth CA 91311

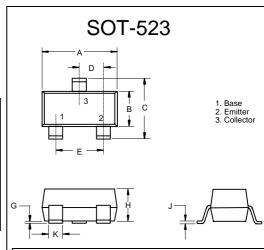
Phone: (818) 701-4933 Fax: (818) 701-4939

DTC114TE

Features

- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0 and MSL Rating 1
- Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors (see equivalent circuit)
- The bias resistors consist of thin-film resistors with complete isolation to allow negative biasing of the input. They also have the advantage of almost completely eliminating parasitic effects
- Only the on/off conditions need to be set for operation, making device design easy

Absolute Maximum Ratings


Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	50	V
Collector-Emitter Voltage	V _{CEO}	50	V
Emitter-Base voltage	V_{EBO}	5	V
Collector Current-Continuous	I _C	100	mA
Collector Dissipation	Pc	150	mW
Junction Temperature	TJ	150	°C
Storage Temperature Range	T _{STG}	-55~150	$^{\circ}\mathbb{C}$

Electrical Characteristics

Sym	Parameter	Min	Тур	Max	Unit
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage (I _C =50uA, I _E =0)	50			V
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage (I _C =1mA, I _B =0)	50			V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage (I _E =50uA, I _C =0)	5			V
I _{CBO}	Collector Cut-off Current (V _{CB} =50V, I _E =0)			0.5	uA
I _{EBO}	Emitter Cut-off Current (V _{EB} =4V, I _C =0)			0.5	uA
h _{FE}	DC Current Gain (V _{CE} =5V, I _C =1mA)	100	300	600	
$V_{\text{CE}(\text{sat})}$	Collector-Emitter Saturation Voltage (I _C =10mA, I _B =1mA)			0.3	V
R₁	Input Resistor	7	10	13	KΩ
f⊤	Transition Frequency (V _{CE} =10V, I _C =-5mA, f=100MHz)		250		MHz

^{*}Marking: 04

NPN Digital Transistor

DIMENSIONS					
	INCHES		MM		
DIM	MIN	MAX	MIN	MAX	NOTE
Α	.059	.067	1.50	1.70	
В	.030	.033	0.75	0.85	
O	.057	.069	1.45	1.75	
D	.020 Nominal		0.50Nominal		
Е	.035	.043	0.90	1.10	
G	.000	.004	.000	.100	
Η	.028	.031	.70	0.80	
J	.004	.008	.100	.200	
K	.010	.014	.25	.35	

DTC114TE

Micro Commercial Components

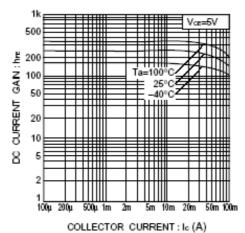


Fig.1 DC current gain vs. collector current

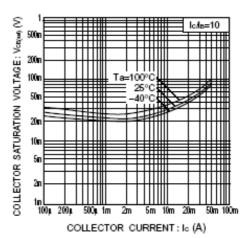
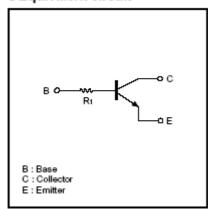



Fig.2 Collector-emitter saturation voltage vs. collector current

●Equivalent circuit

Ordering Information

Device	Packing
(Part Number)-TP	Tape&Reel3Kpcs/Reel

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. Micro Commercial Components Corp. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights ,nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold *Micro Commercial Components Corp* . and all the companies whose products are represented on our website, harmless against all damages.

APPLICATIONS DISCLAIMER

Products offer by Micro Commercial Components Corp. are not intended for use in Medical, Aerospace or Military Applications.